If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2+14t+5=0
a = 3; b = 14; c = +5;
Δ = b2-4ac
Δ = 142-4·3·5
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{34}}{2*3}=\frac{-14-2\sqrt{34}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{34}}{2*3}=\frac{-14+2\sqrt{34}}{6} $
| -7x-3=2-7x-4 | | 20+7x+x=x | | 4u(2u-5)=0 | | 15=r3 | | 27x+1=9 | | 6x-+8=3x-7 | | 7(4w+2)/2=-10 | | 3.5=(2x+1) | | Xx(1+1/x)+17=3x(2-X) | | (2x+16)+(5x-5)+90=180 | | b/3-1=5 | | 10x+19x-8+2=-7x+2-8 | | 3x-4;x=-5 | | 3b=5b-36 | | v-6.89=8.88 | | 2j–16=-12 | | -4+14f=-18 | | 4y-25=-22+y | | 1-(5-6z)=0 | | 7b-8=-1 | | 3x+7-5=22 | | 3.45x2.3=× | | 8y+12y2=0 | | x+(.0925*x)=60627.03 | | -3p+4=1 | | -16-3p=6 | | 30-(0.25x30)=30-7.5 | | 5a^2+4=74 | | 5c-3c+2=10 | | 2.71828^x(5-2.71828^x)-(6)=0 | | 2.71828^x(5-2.71828^x)=6 | | 9y+2=22 |